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Thanks go to Chuck Boiler (SAS) for introducing us to Tom
Donnelly (SAS), who informed us about both this Conference
and the generally excellent research based on the University of
Wisconsin, Madison dissertation of Benjamin Haaland (now
Office of Clinical Sciences, Centre for Quantitative Medicine,
Duke-NUS Graduate Medical School, Singapore, Department of
Statistics and Applied Probability, National University of
Singapore), and his dissertation advisor, Peter Qian.




Clustered Designs

Prelude 1: From Qian, Haaland, & Xu talk, this morning:
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Michalewicz function

We’ll start this presentation, in workshop mode, by commenting
on the presentation this morning by Prof. Qian. Our hope is to
stimulate discussion. Qian pointed out that, when there are
evaluations of a function at a grid of points given by the filled
diamonds in the figure, above, that additional information can be
added by taking points on a second grid of points at the locations
of the x’s. This is sensible.
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Prelude 1: From Qian, Haaland, & Xu talk, this morning:

“Clearly, the x's do not contribute much information about the
unknown surface.”

Michalewicz function Near-neighbor distance: 10-7°
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He then said that if the second grid is proximal to the first, as
shown above, where the second grid is offset in the x-direction
by just 10719, over a full-scale range of unity, “Clearly, the x’s do
not contribute much information about the unknown surface.” It
is tempting to take this as plausible, as when the distance is zero,
for computer experiments, information from the second grid is
non-informative.
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Prelude 1: From Qian, Haaland, & Xu talk, this morning:

“Clearly, the x's do not contribute much information about the
unknown surface.” This is a misconception.
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However, we should be cautious, as, we will argue, the second
grid potentially can provide a wealth of information about the
function. One way of seeing this is that a pair of proximal points
provide both a function evaluation, as well as a directional
derivative, in the vicinity of the pair of points. As reported
earlier by the present author and his collaborators (SBC, “New
Research Directions in Computer Experiments: epsilon-
Clustered Designs,” SRC 2012 Proceedings, Statistical
Computing Section, Alexandria, VA, USA: ASA, pp. pp. 5692-
5706, and references therein. Revised editions are available from
the author), such information can be highly informative. In fact,
optimal N-point designs exist with points that are specified to be
taken as closely together as possible, given the computational
resources available. That is, a design with a pair of twin points is
sometimes more informative than any design without a twin
point. The discovery of these so-called “twin points” or
“epsilon-clustered points” demonstrates that we should not hold
rigidly to the view that designs for computer experiments should
be space-filling in the usual sense of min discrepancy, min max
distance between nearest-neighbor points, or max min Voronoi
cell volumes. ... continues on next page...
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Prelude 1: From Qian, Haaland, & Xu talk, this morning:

“Clearly, the x's do not contribute much information about the
unknown surface.” This is a misconception.
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... continued from last page ...

Rather, we should be more open-minded, keeping in mind, from
elementary calculus, that an analytic function can be determined
to any desired accuracy by a Taylor series based on a function
evaluation and an evaluation of all derivatives, at a single point.
In this latter view, optimal twin-point designs simply tell us that
the optimal design is sometimes neither space-filling nor an
evaluation of derivatives at just one point.

We have emphasized, on the slide, that there is a misconception
that needs to be overcome for the field to move forward
properly. There are significant opportunities for innovative
research related to epsilon-clustered designs.
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Prelude 2: From Qian, Haaland, & Xu paper*:
Schwefel’s function

log MSPE
S,

*Fig. from: Haaland & Qian, Annals of Statistics 39, pp. 2974-3002 (2011)
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We now make a comment on the final slides in Haaland and
Qian’s recent Annals paper. For the complex* function shown,
the nested-Kriging method proposed in the paper gave a log
(mean-squared prediction error) of ~0.1, as shown in the figure.
However, such MSPE is actually little better than the MSPE
found if one just took the predictor to be the average of the
responses.

Ben Haaland mentioned this limitation of the nested approach, in
his September 9, 2011 presentation: B. Haaland, “Accurate
emulators for large-scale computer experiments,” Isaac Newton
Institute for Mathematical Studies, Cambridge, UK. (PDF and
video available at URL:

http://www.newton.ac.uk/programmes/DAE/seminars/20110909
12001 .html).

*Unless symmetry is allowed to be recognized or discovered in
this function, the function is simply too complex to be
adequately approximated by the given design. This is the
principal reason for the poor fit.
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Prelude 2: From Qian, Haaland, & Xu paper*:
Schwefel’s function
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RMSE's:
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Fig. from: Haaland & Qian, Annals of Statistics 39, pp. 2974-3002 (2011)
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In fact, our analysis shows that the Stage 1 RMSE is ~30%.
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Prelude 2: From Qian, Haaland, & Xu paper*:
Schwefel’s function

RMSE's:
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By Stage 3 the RMSE has been reduced to ~20%.

Aside: The Annals paper contains a possible typo. To be correct,
the first “1000” should be “1.000,” and the first “500” should be

“0.500.” Correcting this error makes the reanalysis, here,
sensible.
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Preview:

1. Optimal designs for computer experiments are not
necessarily space filling ...

... but can include points that are specified to be as closely
spaced as practical.
Credit: With Univ. of Michigan Systems Programmer Dave Woodcock

e-clustered designs twin points twin-point designs
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We now quickly preview eleven numbered points we wish to
make in this presentation. Underlined words are recently
introduced or new terms to the field of computer experiments.
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Preview:

2. Each optimal design has a group of symmetries leaving the
objective function unchanged.
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Preview:

3. Designs fall into contiguous regions of identical phase.
There are phase transitions between the phases.
3

phase transitions

sqrt{max[w:m:), f&'ln'y,)]}

1{4sqri(e, 6)]
ACAS 2012
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Preview:

4. Theory: The IMSE objective function is a low-degree-
truncated, rational polynomial.

ad] + bS5, +cd; + di +ed 5, + fO0) + g0, +

IMSE = ——— 2 - ==
ho] +i0,0,+ jo;, + ko +18,0, + md,&; + nd,  +

low-degree-truncated rational polynomial
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Preview:

5. The IMSE objective function, as a function of the separation

of a pair of twin points, is an essential discontinuity.
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Preview:

6. Using the theory, previously incomputable quantities can be
determined via extrapolation.

excluded

ACAS 2012
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Preview:
7. Borehole example starting with a nonuptal-point design.
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Preview:

8. With three, equispaced, collinear points, Kriging gives a
faulty far-field predictand, ...

— T 3
P== [1 —e O ]y Ok gxze”"‘ +y(0) + [y'(O)x a4 (0)xz] e 4 0(8%)
... but this can be cured by dropping the offending terms.

Renormalized Kriging
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Preview:

9. Renormalized kriging solves the problem of loss of accuracy,
when adding points to a Kriging model.
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Figs. from: Haaland & Qian, Annals of Statistics 39, pp. 2974-3002 (2011)
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The function to be approximated by Kriging is shown with a
(faint) dotted line. The function evaluations at N=11, 21, and 81
design points, are shown as black dots, in the left-hand, center,
and right-hand panels, respectively. The Kriging fits are shown
with dark blue lines and demonstrate increasing ill-conditioning
as N increases.
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Preview: HIGHLY SPECULATIVE

9. A new microscopic theory of Kriging is necessary. Is there a
path via 3-way tensor covariance? v-Kriging

10. nuggetkriging::strings:QED?
11. Can statistics come to the aid of physics?
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Ordinary-kriging set-up

k-dimensional design domain: [-1, 1]%, except as noted
Model function: Y=£,+Z(x)
Gaussian process
Gaussian covariance:

COV[Z(Sy, Sp), Z(t;, to)] = 07" exp{-[0;(s,1,)* + O5(S,t5)]}

fixed o, over design domain

known, fixed 6=¢8,,¢.), over design domain
Optimality criterion: Minimum expected IMSE

N-point design

Integral over [-1, 1]

1

L A
min [ [EALY ()= V()] beby, -dl,

Exact (integer number of design points at each location)
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This is a review of the notation used in this presentation.



Clustered Designs

1. Evidence for clustered-point optimal designs for
computer experiments: 1D

min MSE-optimal® augmentation designs??

N=1 L & ! X
-1/2 0 1/2

1. Minimizing the MMSE objective function minimizes the maximum mean squared error over a defined prediction
region, which is usually taken as identical to the design domain.

Prof. Rachel Silvestrini of the Naval Postgraduate School, Monterey, ¢
appeared on Page 419, Column 1 of J W.J. Welch, T.J. Mitchs
computer experiments,” Statistical S 4, pp. 409-435(1989),
N.B.. In Ref. 2, the design domain and prediction region are both [-1/2, 1/2], and 6=1. If, instead, the units of x
are transformed to [-1, 1], then. by scaling, # transforms to &=1/4.

pointed me to this example, which
d H.P. Wynn, “Design and analysis of

~N

w
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Slides 19-42 are drawn from the author’s presentation*® at the
Spring Research Conference 2012 and are shown here, in rapid
succession, as background material.

*See reference on Slide 3.
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Evidence for clustered-point optimal designs for
computer experiments: 1D

MMSE-optimal' augmentation designs2?

N=1 L & ! X
-1/2 0 1/2

N=1+1 L o ]

1. Minimizing the MMSE objective function minimizes the maximum mean squared error over a defined prediction
region, which is usually taken as identical to the design domain.

Prof. Rachel Silvestrini of the Naval Postgraduate School, Monterey, CA pointed me to this example, which
appeared on Page 419, Column 1 of J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, “Design and analysis of
computer experiments,” Statistical Science 4. pp. 409-435(1989)

N.B.: In Ref. 2, the design domain and prediction region are both {-1/2,1/2], and #=1. If, instead, the units of x

are transformed to [-1, 1], then. by scaling, # transforms to &=1/4. ACAS 201
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Evidence for clustered-point optimal designs for
computer experiments: 1D

MMSE-optimal' augmentation designs2?

N=1 L ® ! X
-1/2 0 1/2
L o 1
N=1+1 or
L ‘ |

1. Minimizing the MMSE objective function minimizes the maximum mean squared error over a defined prediction
region, which is usually taken as identical to the design domain.

2. Prof. Rachel Silvestrini of the Naval Postgraduate School, Monterey, CA pointed me to this example, which

appeared on Page 419, Column 1 of J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, “Design and analysis of

computer experiments,” Statistical Science 4. pp. 409-435(1989)

N.B.: In Ref. 2, the design domain and prediction region are both {-1/2,1/2], and #=1. If, instead, the units of x

are transformed to [-1, 1], then. by scaling, # transforms to &=1/4. ACAS 201
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Evidence for clustered-point optimal designs for
computer experiments: 1D

MMSE-optimal' augmentation designs2?

N=1 L U ¢ .
-1/2 0 1/2

L oy ]
N=1+1 or
L pey ]

1. Minimizing the MMSE objective function minimizes the maximum mean squared error over a defined prediction
region, which is usually taken as identical to the design domain.

2. Prof. Rachel Silvestrini of the Naval Postgraduate School, Monterey, CA pointed me to this example, which

appeared on Page 419, Column 1 of J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, “Design and analysis of

computer experiments,” Statistical Science 4. pp. 409-435(1989)

N.B.: In Ref. 2, the design domain and prediction region are both {-1/2,1/2], and #=1. If, instead, the units of x

are transformed to [-1, 1], then. by scaling, # transforms to &=1/4. ACAS 201
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Evidence for clustered-point optimal designs for
computer experiments: 1D

MMSE-optimal' augmentation designs2?

N=1 L U ¢ .
-1/2 0 1/2

L oy 1
N=1+1 or f0), £(0)
L pey 1

1. Minimizing the MMSE objective function minimizes the maximum mean squared error over a defined prediction
region, which is usually taken as identical to the design domain.

2. Prof. Rachel Silvestrini of the Naval Postgraduate School, Monterey, CA pointed me to this example, which

appeared on Page 419, Column 1 of J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, “Design and analysis of

computer experiments,” Statistical Science 4. pp. 409-435(1989)

N.B.: In Ref. 2, the design domain and prediction region are both {-1/2,1/2], and #=1. If, instead, the units of x

are transformed to [-1, 1], then. by scaling, # transforms to &=1/4. ACAS 201

w




Clustered Designs

Evidence for e-clustered optimal designs for
computer experiments: 1D

MMSE-optimal' augmentation designs2?

N=1 L U ¢ .
-1/2 0 1/2

L oy 1
N=1+1 or f0), £(0) twin points
L pey 1

1. Minimizing the MMSE objective function minimizes the maximum mean squared error over a defined prediction
region, which is usually taken as identical to the design domain.

2. Prof. Rachel Silvestrini of the Naval Postgraduate School, Monterey, CA pointed me to this example, which

appeared on Page 419, Column 1 of J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, “Design and analysis of

computer experiments,” Statistical Science 4. pp. 409-435(1989)

N.B.: In Ref. 2, the design domain and prediction region are both {-1/2,1/2], and #=1. If, instead, the units of x

are transformed to [-1, 1], then. by scaling, # transforms to &=1/4. ACAS 201
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N=11, 0,=0.128, 6,=0.069, design domain [-1, 1], abscissa is X, ...

Typical LHC#

n, R.J. Buck, J
s 34, pp. 152

H.P. Wynn, and T.J. Mitchell, and M.D. Morris, “Screening, Predicting, and Computer Experiments
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N=11, 0,=0.128, 0,=0.069, design domain [-1,1], abscissa is x,

Typical LHC# IMSE-optimal>-®

4.W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, and T.J. Mitchell, and M.D. Morris, “Screening, Predicting, and Computer Experiments.”
Technometrics 34, pp. 15-25 (1992).

5. D.M. Woodcock and $.B. Crary, “Navigating Smooth IMSE Landscapes Using High Precision Floating Point.” (oral only) Joint Statistical
Meetings, Indianapolis, IN, 13-17 Aug 2000

6.5.C., D.M. Woodcock, and A. Hieke, “Designing efficient computer experiments for metamodel generation,” Published in the Proceedings of
the Fourth International Conference on Modeling of Microsystems, MSM 2001, Hilton Head, SC, March 19-21, 2001, pp. 132-135

7.5.C., “Statistical design and analysis of computer experiments for the generation of parsimonious metamodels,” Published in Design, Test
Integration, and Packaging of MEMS/MOEMS 2001, B. Courtois. J.M. Karam, S.P. Levitan. KW. Markus, A.A.O. Tay. and J.A, Walker.
Editors, Proceedings of SPIE Vol. 4408, pp. 29-39 (2001).

8.5.C., “Design of computer experiments for metamodel generation,” Analog Integrated Circuits and Signal Processing 32, pp. 7-16 (2002).
9.5.C. and R. Johnsen, *Validation of the Twin-Point-Design Concept in the Design of Computer Experiments,” Section on Statistical
Computing — JSM 2011, pp. 5495-5505. ACAS 2012
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N=11, 6,=0.128, 0,=0.069, design domain [-1, 1], abscissa is x;,

ar

[ ] L .
Typical LHC* IMSE-optimal5-?

4.W.J Welch, R.J. Buck, J. Sacks, H.P. Wynn, and T.J. Mitchell, and M.D. Morris. *Sereening, Predicting, and Computer Experiments,”
Technometrics 34, pp. 15-25 (1962)

5. D.M. Woodcock and S.B. Crary, “Navigating Smocth IMSE Landscapes Using High Precision Floating Point.” (oral only) Joint Statistical
Weetings. Indianapolis, IN. 13-17 Aug 2000

6.5.C., D.M. Woodeack, and A Hieke, "Designing efficient camputer experiments for metamodel generation,” Published in the Praceedings of
the Fourth International Conference on Modeling of Microsystams, MSM 2001, Hilten Head, SC, March 18-21, 2001, pp. 132-135,

7.8.C., "Statistical design and analysis of computer experiments for the generation of parsimonious metamodels,” Published in Design, Test
Integration, and Packaging of MEMS/MOEMS 2001, B. Caurtois, J.M. Karam, S.P. Levitan. KW. Markus, AA.O. Tay, and JA. Walker,

Editors, Proceedings of SPIE Vol. 4408, pp. 28-38 (2001)

8.5.C., “Design of computer experiments for metamodel generation,” Analog Integrated Circuits and Signal Processing 32. pp. 7-16 (2002).
©.5.C. and R. Johnson, “Validation of the Twin-Point-Dasign Concept in the Design of Computer Experiments,” Section on Statistical
Computing - JSM 2011, pp. 5495-5505 Fr—
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2. Phases: For all designs on this page: #,=0.128
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2. Phases: For all designs on this page: #,=0.128
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2. Phases: For all designs on this page: #,=0.128
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2. Phases: For all designs on this page: #,=0.128
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2. Phases: For all designs on this page: #,=0.128
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2. Phases: For all designs on this page: #,=0.128
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2. Phases: For all designs on this page: #,=0.128

0,=0.033
4 twin
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2. Phases: For all designs on this page: #,=0.128

0,=0.033
4 twin

L] . L

ACAS 2012




3. Phase transitions: IMSE optimal designs

Clustered Designs 3
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Phase diagram of water, from Wikipedia
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4. IMSE is a low-degree-truncated rational function
k=2, one pair twin points

Key ideas:
. « Change variables

“a

Expand in powers of &, and &,
¢ + Assumes power laws exist and
converge appropriately

IMSE = as] +h35, +c8;  +  do) +ed70,+ 6,5] + g8 +

hST +i8,8, + j&; + kS 1675, + mS,S; + v, +

k=1 is a special case. Above equation generalizes for any k1.
Proof available, upon request.

ACAS 2012
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5. IMSE, in the vicinity of a pair of twin points’%-"7,
is an essential discontinuity:
[-1,1]2, N=2, center of twins at (0.0,0.6)

005 00 .gps
C~ except ... delta2

10. These figures are from SC. and R. Johnson, “Validation of the Twin-Point-Design Concept in the Design of Computer Experiments,
Section on Statistical Computing ~ JSM 2011, pp. 5495-5505
11. In the figures, delta =2, and delta2=2;,

ACAS 2012
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00 005 s
deltal

Looking to the future: Here is the IMSE of three, equispaced,

collinear points centered on the origin of [-7, 1]2.
As before, delta1=25; and delta2=20,.
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6. Previously incomputable quantities
Example: Accurate Computation of IMSE

excluded

s

There is severe
ill-conditioning, when

5<10-° ...

... but the form of the IMSE

"

=a,+a,6 +-

so, fit and extrapolate

""""" | AB &
is known, viz.,
lim IMSE | &2
&, =0 -
-0
Design-pomt label A xX= 07 ASE a.f
A 0.00120 00000 144 0.7460920868.
B 0.00140 0.0000196 0).746091 2887
X, \via : () [0 (), 7460942972
Y A\ alic & [\ 1} 4 1) ‘1(»094.‘_1)'-‘

T works!
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7. Borehole example starting with a nonuptal-point design.

020
i 27T, (H, — Hy) 18
— 0.16
In(r/ry) [1 + #ﬂ,{T + %—] [t :"Z?‘”ﬂ::"
10.10
Stage 1: Nonuptal-point design at l0.08
origin: 0.06
. antisymmetric dependence can o
be identified l0.00 |
. a method of screening 3020 Rcdonenor 2 X
. dimensional analysis can be . —
used

Stage 2: IMSE-optimal, 9-point,
augmentation design, using JMP V.7
Stage 3: Final 9-point augmentation

"R EE

Ordinary and blind kriging from
Joseph, et al., ASME J. Mech. Des. 130, 03112-1-8

ACAS 2012
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1D Kriging predictand for an N=2,

twin-point design, Yhahy{ﬂﬁy'{ﬂ}x&""z:
8. The ¥(0)=3, y'(0)=2, 65

problem with
Kriging: With

twin points
Kriging 3
works fine.

Yhat
o

-1.0 0.0 1.0

ACAS 2012

Slides 44 through 48 demonstrate an application of the twin-
point perspective to Kriging. For N=2 points, the Kriging
predictand can be expressed in simple algebraic form. We have
shown that, in the limit of zero distance between the points
(N.B.: This is not the same as repeated points), the predictand
can be expressed as the formula for Yhat in the title of the plot,
viz., as the value of the response at the location of the twin
points (y(0) or alternatively as the average of the responses at
the points) plus the derivative of the responses (y’(0) or
alternatively determined by a simple, two-point difference
formula) times the independent variable x times a decay function
exp(-theta*x”2). This is sensible. It captures the data perfectly,
and then, in the far-field, decays to the average of the data.
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1D Kriging predictand for an N=3,
o triplet-point design:
Kl’lglﬂg w ¥(0)=3, y'(0)=20, y"(0)=70, 610
equispaced, 8
collinear, P
triplet / \
points has a 5 "\ unrenormalized
potentially ' \ Kriging
. 5 i
problematic i N
. 1
far-field. .
\ [

Yhat
-
w
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A similar analysis for three proximal points, i.e., triplet points, in
the limit as the distances between them approach zero, gave a
far-field that was distinctly different from the average of the
three responses. (Detail is provided on Slide 51.) The function
has the values of y(0), y’(0), and y’’(0) given in the title, so the
average of the three responses, in the limit, is just 3, but the far-
field specified by Kriging is greater than 4. The Kriging
predictand is sensible, local to the data, but raises an interesting

issue in the far-field.

Gordon A. Fenton, “Estimation for Stochastic Soil Models,”
ASCE  Journal of Geotechnical and Geoenvironmental
Engineering, 125 (6), pp. 470-485, 1999 noted this effect, but he
wrote , “Note that this estimator is generally not very different
from the usual estimator obtained by simply averaging the

observations.”

We note the fact that, for triplet points, the far-field differs from
the average of the responses by exactly y’’(0)/(6*theta), and this
can achieve any value, for fixed theta, depending upon the data

contributing to the second derivative.
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1D Kriging predictand for an N=3,
triplet-point design:
¥(0)=3, y'(0)=20, y"{0)=70, 6=10
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If we consider that the desirable part of the predictand is

y(0)+H[y’ (0)*x+(1/2)*y”’ (0)*x" 2] *exp(-theta*x"2),

then the

predictand has additional terms, which we clump together as the

“singular part.”
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1D Kriging predictand for an N=3,
triplet-point design:

Kriging w W0J=3, ¥ (0)=20,y'(0)=70, 6=10
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If this singular part is removed, we get the desired far-field. The
resulting predictand is shown by the blue line. This is a sensible
predictand, as it has the correct y(0), y’(0), and y’’(0) at the
triplet-point, and the far-field decays to the average of the
responses.

However, it should be pointed out that, as the limit is
approached, the predictand does not pass through the data
perfectly. But to emphasize: everything is fine in the limit.

For true triplet-point designs, this indicates we might choose to
abandon customary Kriging, as it gives a possibly undesirable
far-field. But, what if we are in a regime where the distance
between the points is small but finite? Then we have to make a
choice. I suggest this is an interesting and important area for
research.
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Renormalized Kriging

Kriging with three or more points can give a potentially
problematic far-field.

The potentially offending terms can be removed, leading

to renormalized Kriging: Yhat=y(0)+[y'(0)x+(1/2)y"(0)x?]e

o2

Renormalized Kriging is extensible to m-uplet-point
designs.

There are many outstanding research questions.

ACAS 2012
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9. Avariant of renormalized kriging can solve the problem of loss
of accuracy, when adding points to a Kriging model.

o (\.
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Figs. from: I-,iaaland & Qian, Annals of Statistics 39, pp. 2974-3002 (2011)

Local to a cluster, use any sensible fitting method, e.g., cubic splines,
higher-order splines, Neville's algorithm, etc. Then, connect the regions

via algebra of the form Yhat=y(0)+[y'(0)x+(1/2)y"(0)x?Je***. The local fits
improve with the addition of points. Medium- and long-range model is good.

ACAS 2012

A variant of renormalized Kriging is to take any sensible fit
local to the data at hand and then to extrapolate to other local
regions, or to the far-field, using a bridging function of the
general form exp(-theta*x”2). Instead of the fit getting worse, as
shown by the solid-blue lines, when data are added, the fit
improves.
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9. More: Renormalized kriging via local Neville’s algorithm fits +
connector functions like y(0)+[y’(0)x+(1/2)y”(0)x%]e %<

f(x)

: |
\ ./.

10 -08 06 04 -02 00 02 04 06 08 10 12 14 16 18 20
x

For the function given in the Haaland and Qian paper, a local fit
via Neville’s algorithm can be used and then connected to the
far-field. The resulting fit is shown by the solid-blue line, for a
fixed value of theta.

We have also found that the undesirable effects of ill-
conditioning, in this problem, can be removed by use of the
linear-exponential ~covariance function (see, e.g., Erik
Vanmarcke, Random Fields: Analysis and Synthesis, World
Scientific, revised edition, 2010, p. 132):

[(sigma_z)"2]*[1+alpha*abs(tau)]*exp[-alpha*abs(tau)].

We found that this function provided a much smoother
interpolant just the exponential covariance function

[(sigma_z)"2]*exp[-alpha*abs(tau)].

Our research on condition numbers and solutions to the ill-
conditioning for this problem is on-going, and we will provide a
fuller report, in the near future.
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Detail: Renormalized-Kriging Predictand
Kriging theory: ¥ = B+ v, "' (y — FB) , where
B= (F'V_lF)_lF’V_ly leads to the following:
P =1 e ]y 0 p e () + [y O+ 55 @2 e 4 0(5%)
60 Y 6 2
Drop the red terms
Renormalized Kriging: ¥ = y(0) + [y'(O)x+ %y"((])xz] 0 ¢ 0(8°%)

Method is extensible.

There are many outstanding research questions

ACAS 2012

In summary, twin points and their m-uplet-point extensions pose
both conceptual and interesting research challenges. As a
community, we should be open-minded to designs with clusters
of proximal points, and we should learn how to exploit the
information they provide, even if it comes in the form of
derivative information. Analysis of Kriging with these concepts
in mind has led to the possibility of a renormalized Kriging that
neglects certain terms that arise in customary Kriging.

The author thanks the organizers of ACAS for their hospitality
and organizational efforts. He welcomes others to collaborate
with him, or to start their own research programs, on the
interesting subject of epsilon-clustered designs.
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