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Abstract 
We explore the existence, properties, and applications of exact optimal designs for 

computer experiments, under Gaussian-process (GP), fixed-Gaussian-covariance-

parameter, zero-nugget assumptions that prescribe a cluster of two or more design points 

as closely spaced as practical, without being identically located. We define such designs 

as -clustered and define subcases, e.g., twin-point, triplet-point, etc. designs and review 

the history of these designs. We also define the phase of a design, based on its symmetry 

properties, and we introduce the concept of phase transitions between phases. We prove 

that the 0
th
- and 1

st
-degree terms in the expansion of the determinant of the covariance 

matrix, in powers of the separation distance from the center of a twin-point cluster to one 

of the twins, are zero.  Using this fact, we outline a proof that, in two or more factors, the 

IMSE function is a truncated rational function, with leading powers of at least two in the 

series expansion of the separation of the points, for numerator and denominator. We 

outline applications of the theory to extrapolation and to inversion of covariance 

matrices. We demonstrate the use of a nonuplet-point (9-point) design as the first stage of 

a sequential GP fit. We conjecture the form of the power-series expansion of the 

determinant of the covariance matrix for triplet-point, quadruplet-point, etc. designs. 

Finally, we conjecture that standard GP fitting does not support triplet-point designs, but 

a renormalization fixes this problem. We use the renormalization conjecture as a basis for 

performing GP fits to functions with regions of closely-spaced design points and show 

that the proposed method avoids the numerical errors observed via standard approaches. 

 

Key Words: Twin-point design, twin points, clustered design, computer experiments, 

Gaussian processes, IMSE, design of computer experiments, Kriging, essential 

discontinuity, rational function, covariance function, covariance matrix, ill-conditioning 

 

1. Introduction 
 

We are interested in the existence, properties, and applications of exact optimal designs 

for computer experiments, under Gaussian-process, fixed-Gaussian-covariance-

parameter, zero-nugget assumptions, that prescribe a cluster of two or more points as 

closely spaced as practical in the design space, without being identically located. We 

define such designs as -clustered. Such designs with exactly two proximal points were 

called twin points by Crary et al., and designs with exactly one pair of twin points were 

called twin-point designs [1]. By extension, such clusters with exactly three, four, etc. 

points may be named triplet points, quadruplet points, etc., respectively, and designs with 

exactly three triplet points, four quadruplet points, etc. may be named triplet-point 

designs, quadruplet-point designs, etc., respectively. 
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The clusters of the present study are distinguished from other types of clusters studied in 

statistics, e.g., those studied by Cochran [2] or Morris [3], in which design points, while 

separated by small distances in the design domain, were not specified as being as close as 

practical. 

 

The clusters of our study are also distinguished from points in the design domain at 

which a function evaluation and/or one or more directional derivatives are specified to be 

taken because of the availability or computability of derivative information at those 

points, via adjoint [4,5] or other [6] methods. 

 

Rather, we report optimal designs, in addition to those reported in [1,7,8], found by 

treating all design points on an equal footing and using extended-precision arithmetic and 

algorithms. Optimal -clustered designs occurred frequently. The complex phase diagram 

that can be constructed from plotting boundaries of contiguous regions of designs sharing 

symmetry properties, as a function of the covariance parameters, is an emergent property, 

made evident via computation. 

  

The closest work to our study is the speculation in Stephenson’s dissertation [6] that 

optimal designs for the construction of emulators may specify some regions (or points) 

where only function evaluations should be taken and other regions (or points) at which 

derivative information should be taken. 

 

The foundational paper by Sacks et al. [9] provides the present paper’s theoretical 

background and notation. The matrix L is defined in [12]. 

 

1.1 Known -clustered designs 

D=1, N=2, MMSE-optimal, restricted, twin-point design: The first reference to such 

clustered designs seems to be Sacks, Welch, Mitchell, and Wynn (SWMW) [10], who 

reported a pair of twin points in the minimum-MMSE, N=2, =1 design on a closed 

interval of length L=1, with one point restricted to be held fixed at the interval’s center. 

They provided the interpretation that the twin points provide both a function evaluation 

and a directional derivative at the twin-point location. Our close examination of this 

problem has shown the second design point is optimally located, as follows, depending 

upon the value of the dimensionless covariance parameter L
2
, relative to a critical 

value c of approximately 2.78: 

(i) c at the interval’s center, as one of a pair of twin points 

(ii) c at either end of the design interval 

(iii) c indifferently at the interval’s center, as one of a pair of twin points, or at 

either end of the design interval. 

 

D=1, N=2, IMSE-optimal, restricted, twin-point design and twin-point transition: The 

day after the oral, SRC 2012 presentation of the present SRC 2012 paper, Hickernell [11] 

reported observing a continuous transition, upon decreasing  below a critical c’01, 

from a non-twin-point design to a twin-point design, for the problem of the minimum-

IMSE, N=2 design on a closed interval, with one point held fixed at the interval’s center. 

This critical value has been confirmed by the present author. 

 

Open research question: SWMW’s twin-point design; our observation of a phase 

transition extending the result of SWMW; Hickernell’s twin-point design; and 

Hickernell’s continuous, twin-point transition all require one of the design points to be 
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fixed. An open research question is whether single-factor, unrestricted, -clustered 

designs exist for minimum-MMSE, minimum-IMSE, or other useful objective functions. 

 

D=2, N=11, IMSE-optimal, unrestricted, twin-point designs and twin-point 

transitions: Crary, Woodcock, and Hieke [1] reported the two-factor, N=11, 0.512, 

, IMSE-optimal, twin-point design, over the design domain [-1,1]
2
, shown in 

Fig. 1, below. The vertical separation between the twin points was prescribed to be as 

small as practical, given the available computational resources. 

 

D=4, N=8, IMSE-optimal, unrestricted, twin-point design: Crary [7,8] reported the four-

factor, N=8, 2.024, , 1.260, , IMSE-optimal, twin-point design, 

over the design domain [-1,1]
2
, shown in Table 1, below, where the value of  was 

prescribed to be as small as practical. 

 

 

 

 

x1 x2 

-0.859071 0.001473 

-0.792118 0.779630 

-0.782622 -0.803880 

-0.314466 0.039516 

0.000009 0.906950 

0.314470 0.039508 

0.782616 -0.803880 

0.792121 0.779620 

0.859072 0.001461    

-0.000017 -0.617140+ 

-0.000017 -0.617140- 

 

Figure 1: The dot diagram (left) and listing (right) of the N=11, 0.512, , 

IMSE-optimal twin-point design of [1] are shown the this figure. In this and all 

subsequent dot diagrams of the present paper, the horizontal and vertical axes are x1 and 

x2, respectively, and the design domains are [-1,1]
2
. 

 

 

Table 1: The four-factor, minimum-IMSE design listing from [7,8]. The design domain 

is [-1,1]
4
, and the covariance parameters are 2.024, , 1.260, and . 

 

x1 x2 x3 x4 

 0.6038  0 -0.6570  0 

-0.6038  0  0.6570  0 

-0.5355  0 -0.4540 -0.6245 

-0.5355  0 -0.4540  0.6245 

 0.5355  0  0.4540 -0.6245 

 0.5355  0  0.4540  0.6245 

 0.0005  0 +  -0.0012   0.0001 

 0.0005  0 -  -0.0012   0.0001 

 



4 
 

 

The author knows of no other -clustered designs in the literature. 

 

1.2 Theory 

Crary and Johnson [12], mostly using symbolic algebra, confirmed the earlier result [1], 

which mostly used high-precision numerical analysis, that the D=1, N=2, closed-interval, 

IMSE objective function was not singular, in the limit as the distance between the two 

design points approached zero, ( 0), but that there was a jump discontinuity in the 

function, when the distance between points equaled zero (=0). They also reported that 

the D=2, N=2, closed-rectangular-design-domain, IMSE objective function was of the 

following, rational-function form: 

 

    

  
  

   
     

                     

 (    
      

 )                    
 , with c¹0, 

 

where 1 and 2 are the Cartesian components of distance from the center of the points to 

the one of the points; and a, b, and c are real constants. Finally, they showed this function 

did not possess any singularity, except for an essential discontinuity at 1=2=0 [12].  

 

The following pair of 3D plots shows an example, from [12], of this essential 

discontinuity from two different viewing angles: 

 
Figure 2: Two views of the essential discontinuity of an IMSE function, from [12]. 

 

The purpose of the present paper is to advance the understanding of -clustered designs 

and to encourage others to investigate these interesting designs. 

 

2. Phases and an Example Phase Diagram 
 

In addition to the D=2, N=11, 0.512, ,  IMSE-optimal, unrestricted, twin-

point design shown in Fig. 1, above, we also identified similarly characterized designs for 

a variety of pairs of values of  and . A series of eight of these designs, all with 

0.512, but with ranging from 0.132 to 0.440, is shown in Fig. 3, below. Two of 

these designs were twin-point designs. One of the pairs of twin points had a separation 

direction along the x2 axis, while the other had a separation direction not along a cardinal 

direction. (See the figure caption for details.) 
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Figure 3: A series of IMSE-optimal designs for 0.512 is shown here. From top left, 

reading horizontally, the values of are 0.132, 0.140, 0.148, 0.152, 0.200, 0.224, 0.276, 

and 0.440, respectively, and the phases are 1, 21, 4, 4, 4T, 4, 21T, and 21, respectively. 
 

Some of the designs of Fig. 3 had symmetries under mirror reflections about either the x1 

or x2 axes, i.e., the operations of the Klein four group (also known as the dihedral group, 

D2). For example, the design with =0.132, transformed, under these reflections, only 

into itself and thus had group membership 1. By contrast, the design with =0.140 

transformed, under these reflections, into either itself (via reflection about the x2 axis) or 

into a different design (via reflection about the x1 axis) with equal value of the objective 

function and thus had group membership 2. In analogy to phases of matter, we identified 

the phase of a design as the proper symmetry group of the design. 

 

For this two-factor case, we chose to label the phases first by their group membership, 

i.e., by 1, 2, or 4; then to add a subscript 1 or 2 to indicate about which axis a 

membership 2 phase had its mirror symmetry (1 for the axis with the smaller  value); 

and finally to append the letter “T” for a twin-point design. Because a twin-point design 

came with a specific direction between the twin points, there could be no Phase 1 twin-

point design. Further, we did not consider phases with more than one pair of twin points 

nor those with triplet points, etc., as such phases were not observed. Thus, the following 

were the seven possible names of phases, according to our naming convention: 1, 21, 21T, 

22, 22T, 4, and 4T. 

 

Extending our analogy with phases of matter, we generated the phase diagram in Fig. 4, 

which, for variable values of the covariance parameters,  and  , showed a number of 

well-defined, contiguous regions of constant phase. Phase boundaries were drawn as 

guides for the eye. Straight-line segment A-B, represented a line of points on the plot 

with 0.512, and, thus, this line passed through all the designs of Fig. 3. In order, 

starting at A, the phases on this line segment, were 1, 21, 4, 4T, 4, 21T, and 21. Thus, 

along this line segment, five of the seven uniquely named phases were observed. 

 

If line segment A-B were extended down and to the left in Fig. 4, it would pass into 

another Phase 4 region, which was observed for all designs with , i.e., along the 

lower boundary of the plot. Detail: When , the full symmetry group to be used was 

the full symmetry group of the square, viz., Z4, rather than the Klein four group. Group Z4 

allowed for two additional reflection symmetries, viz., those about the two diagonals of  


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Figure 4: The above dimensionless phase diagram shows contiguous regions of the 

covariance parameters in which all designs share the same set of invariances under either 

of the possible mirror symmetries about the x1 and x2 axes. The line A-B starts in a Phase 

1 region ( symbol), in which all designs transform to themselves under either or both of 

the possible mirror symmetries. A prototypical design in this phase is shown in the top-

most set of designs to the right of the large, main plot. Line A-B then passes through a 

phase labeled “21” (+), in which all designs transform either to themselves or to one other 

design with equal IMSE. The line then passes through a phase labeled “4” (), where all 

designs transform to themselves or to any of three other designs related by mirror 

symmetries. Next is a phase labeled “4T” (), in which all designs include exactly one 

twin point. The line then enters a phase “4” region, followed by a phase “21T” region 

(open crosses) and a phase “21” region. The very small filled squares are guides for the 

eye. The plot was originally generated using the symbol  for the covariance parameters, 

rather than , and the plot has not been updated. The connection between these values is 

given on the second page of this paper.  
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the square design domain, and this fact led to additional possible phases. As none of the 

four designs with  was observed to possess a mirror symmetry about a diagonal, we 

didn’t require, for this study, to add additional phase names, so we simply maintained the 

original seven names mentioned two paragraphs above. All of the seven phases, except 

22T were observed. 
 

When both abscissa and ordinate values were approximately 1.5, we observed a set of 

especially closely spaced phase transitions. In particular, we observed a single Phase 4T 

twin-point design on an extension of the straight line segment between the only two 

Phase 22 designs observed in this study. Along this extension, six of the seven named 

phases were observed. 

 

3. Theory 
 

In this section, we demonstrate two key results of our theory of clustered designs. 

 

3.1 The 0
th

- and 1
st
-degree terms of the power series expansion, in the k’s, of 

the determinant of the covariance matrix of a design with D>1 factors and a 

pair of twin points separated by distance 2 are zero. 

 
[20131007 revision: This section is a major revision from previous versions.] 

 
The symmetric covariance matrix of a D-factor design with one pair of twin points and 

Gaussian-covariance function can be written in block and sub-block form as 

 

    
 

[
 
 
 

          

          
       
    ]

 
 
 
 , 

 

where the sizes of Blocks E, F, and J are of size (N-2)
2
, (N-2)x2, and 2x2, respectively; 

sub-blocks      and      are of size (N-2)x1; and sub-block      is of size 1x1. 

 

After changing variables to replace the 2·D coordinate components of the twin points 

with D coordinates of the center of the twins, xt=(x1+x2)/2, and D components of the 

vector from the center of the twins to the first of the twin points,  = x1 – xt, the elements 

of the blocks and sub-blocks of      
  are the following, assuming Gaussian covariance: 

 

         { ∑   
 
   (         )

 
}         {  ∑   

 
     

 } 

 

         { ∑   
 
   (            )

 
}   

 

     { ∑   
 
   (         )

 
  (         )     

 }  

 

         { ∑   
 
   (            )

 
}  
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     { ∑   
 
   (         )

 
  (         )     

 } , 

 

where the k are the Cartesian components of . 

 

We note that all the elements of     
  can be expanded in Maclauren series in the k, as 

 

      
 ∑        

 
    ∑          

  
    ∑ ∑  (    )       

 
      

   
       ,  

 

where the matrix of constant terms is 

 

        
 

[
 
 
 
 
 
 
 
                  

   
    

   

              
   

    
   

       

           
   

      
   

                   
       
       ]

 
 
 
 
 
 
 
 

 , 

 
and where the   

      for i,j=1,…,N-2 are the covariances between the N-2 singleton 

locations, and the   
     

   
 for i=1,…,N-2 and m=1,2 are the constant terms of the  

expansions of the covariances between the i’th singleton location and the m’th twin-point 

location. 

 

By the definitions of the     , above, it is clear that     
   

     
   

, and, as a consequence, 

matrix      has two identical columns. Thus,          . 

 

The determinant of V can also be expanded as a Maclauren series as 

 

                  ∑             
 
    ∑               

  
     

 

   ∑ ∑    (    )          
 
      

   
       . 

 

From the fact that the determinant of an arbitrary NxN matrix A can be expressed, via a 

Leibniz formula, as a sum of products of elements of A, it follows that the constant term 

in the power series of det(V) is an matrix of constants, and therefore that           

       , which, we just determined, is identically zero. Further, det(V) must be invariant 

under interchange of the twin points, and this leads to the result, for covariance functions 

with continuous first derivatives, that all odd powers of det(V) are zero. Thus, we see that 

the 0
th
- and 1

st
 -degree terms in the power series of det(V) are identically zero, which was 

the result sought. In the case of a covariance function that does not have a continuous 

first derivative when its argument is zero, but the covariance function is still symmetric 

under sign change of its argument, e.g., the exponential covariance function, the 1’st-

degree terms are not identically zero. 
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3.2 The IMSE objective function, for covariance functions with continuous 

first derivatives, in the vicinity of a pair of twin points separated by distance 

2, is almost always a low-degree-truncated rational function with leading 

terms 


 in both numerator and denominator. 

 

We start with two matrix identities. 

 

Identity 1: The trace of the matrix product of two, equal-sized, square matrices, A and B, 

with B symmetric, equals the sum of the element-by-element products. 

 

Proof:          ∑         
 
    ∑ ∑          ∑            

 
   

 
    . 

 

Identity 2: The elements of the inverse of symmetric, invertible matrix L are 

(   )
   

 
           

       ., where Mi,j is the i,j minor of L. 

 

Proof: From (   )
   

 
(  )

   

      
 

    

      
, where C is the cofactor matrix of L, and from 

                , it follows that (   )
   

 
           

      
 

           

      .

  

We now outline the proof of the statement in the heading of this subsection. 

 

Using the definition of IMSE from [9], as well as the two identities, above, 

 

       
    (    )    

  ∑ (   )
   
     

  
        ∑        

           

          .

 
 

For a twin-point design, each of the numerator and denominator of IMSE can be 

expanded as a Maclauren series in the k’s, with the numerator having the following, 

possibly zero-valued, 0
th
 and 1

st
-degree terms, for D>1, independent of the k’s: 

 

                     ∑ {           
       

   
}      and 

 

                    ∑ {       (    
       

        
       

   )}     , 

 

where we have used the fact                      , which follows simply from an 

argument similar to the one used in Sec. 3.1, above, that showed           

           .

 

The denominator of IMSE, for D>1, is det(L), for which the 0
th
- and 1

st
-

degree powers of k’s were shown, in Subsection 3.1, above, to vanish.

 

When D=1, IMSE 

can be written as a polynomial in  [12]. 

 
The statement of the heading now requires only for it to be shown that both 

numerator
(0)

(IMSE)=0 and numerator
(1)

(IMSE)=0. This can be accomplished for all 

possible cases, when the covariance function and its first derivative are continuous. 

Contact the author for details. 
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4. Application: Interpolation 
 

Because the IMSE function, for small k, almost always takes the form 

 

    

  
             

   
     

                       

   
     

                       
 , 

 
computation via evaluation of the inverse of L leads to ill-conditioning, as is well-known. 

An alternative is to perform the computation using symbolic-manipulation software, but 

this method also seems intractable, except for very small problems. Here, we outline an 

example approach to computing IMSE, with small k, that avoids the ill-conditioning 

altogether, thus allowing for accurate computation of IMSE. 

 

The example problem statement is as follows: For D=2 factors, Gaussian covariance, and 

N=2 points, which are a pair of twin points centered on the origin of the square prediction 

region [-1,1]
2
, and 1=2=1, find        

    

    . 

 

From the discussion in this paper, IMSE can be expanded as a power series in 1 and 2, 

about the center of the twin points, as 

 

 
    

  
  

   
     

     
                       

   
     

     
                       

 , 

 

and, along any straight line through 1=2=0, this can be expressed as 

 

 
    

  
           

                        .

 
 
By symmetry under interchange of the twin points, along a discussion similar to one in 

Subsection 3.1, above, we know that the odd terms of the power-series expansion of 

IMSE are zero, so we are left with

  

 
    

  
      

                        (1) 

 

We seek the numerical value of h. 

  

We now make reference to Fig. 5, below. For small , there is an “excluded region” 

centered on xt, in which the traditional, all-numeric, matrix computations fail, or are 

inaccurate, due to ill-conditioning of the L matrix. We made all-numeric computations 

exterior to the excluded region, specifically at points A and B, where 1=0.0012 and 

0.0014, respectively, as given in Table 2, below. Extrapolating from these values, it was 

possible to approximate the values of 
2/ zIMSE   in the excluded region, using Eq. 1, 

above. In particular, it was possible to determine IMSE=0.7460942972, at the center of 

the twin points. This agreed with the value obtained, in this simple case, via symbolic 

analysis, as shown in Table 2, below. 
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Figure 5: Centered on the center of the twin points, is an exclusion region in which the 

traditional, all-numeric, matrix computations fail. All-numeric computations made 

exterior to this region, e.g., at points A and B, are allowed. 

 

 

Table 2: Design-point labels and values used in the extrapolation of Section 4 

 

Design-point label 
1
 

1

2
 IMSE/

z

2
 

A 0.0012 0.0000144 0.7460920868… 

B 0.0014 0.0000196 0.7460912887… 

x
t
 , via extrapolation 0 0 0.7460942972… 

x
t
 , via symbolic analysis 0 0 0.7460942972… 

 

 

5. Application: Inversion of Ill-Conditioned Covariance Matrices 
 

The method of the last section was also applied to inversion of highly ill-conditioned 

covariance matrices and performed well. Outstanding research questions include 

determination of the radius of convergence of the power-series expansions, as well as 

demonstration on a variety of problems. Interested parties may contact the author. 
 

6. Application: Borehole Model 
 

We sought an example where a design with a cluster containing a few to several points 

might be useful. We decided to explore the well-known, D=8, deterministic-error-model, 

borehole model [13] and to use N=27 design points and Gaussian covariance, so the 

method could be compared to the blind-kriging method of [14]. We took the radical 

approach of considering, as a first stage in a sequential approach to this problem, a 

nonuptal-point (9-point) design located near the origin of the scaled variables. Our 

thinking was that such a design, while leading to extreme ill-conditioning of the L matrix 

of the traditional approaches, might be a good means of screening for irrelevant factors 

A B 
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and for identifying possible symmetric influence on the response function. (Of course, we 

knew, a priori, from the problem statement, that variables Hu and Hl appeared anti-

symmetrically, but, we adopted, as much as possible, the attitude that we were blind to 

this fact.) For the first attempt at this problem, we compromised our approach and 

actually used only a coarsely spaced cluster of nine points, viz., the origin and one step of 

length 0.1 from the origin in each of the eight Cartesian directions. The results were 

evaluated using traditional algebraic methods. 
 

The analysis showed there were likely only four highly relevant factors for the response, 

in the vicinity of the origin, and that two of these had exactly anti-symmetric influence on 

the response. Using these results, we updated our beliefs about the importance of each 

factor on the response, over the entire domain of the problem. It was possible (but 

certainly not proved) that there were four irrelevant variables and that two of the 

remaining four, viz, Hu and Hl, appeared anti-symmetrically in the response. By noting 

that the units of Hu and Hl, were identical, viz., lengths, this increased our belief, in a 

Bayesian sense, that these variables appeared anti-symmetrically over the entire domain 

of the problem and that these two variables could be replaced by the single, new variable 

Hu-Hl. If the dimensions of these two variables had not been identical, then it would have 

been impossible for them to appear in the response function in this way. 

 

For the next design stage we used a four-factor, IMSE-optimal design from JMP Version 

7, using thetas of unity, which choice reflected our assumed blindness to the exact nature 

of the problem, and our knowledge of the well-known fact that the exact specification of 

thetas might not be critical. As the simulator allowed for the other variables to be inputed, 

we designed a separate IMSE-optimal design for these variables. 

 

We continued with a final 9-point design and, after analysis, generated the histogram of 

errors shown in Fig. 6, below, based on 10,000 random evaluations of the final 

metamodel. This histogram had roughly twice the height (and half the width) of the 

comparable histogram for blind kriging [14]. 

 

Lessons learned: Nothing dramatic was learned from this example, but it was an 

interesting example of how clustered designs, once they are allowed as design candidates, 

might play an important role in metamodeling. We were pleasantly surprised to see that 

the first-stage, quasi-nonuptal-point design led to a final histogram of errors comparable 

to a design and analysis in which IMSE-optimal designs were used throughout. In 

addition, clustered designs could potentially identify variables that appear symmetrically 

or anti-symmetrically in the response. They also allow for highly accurate exploration of 

the response local to the cluster, a feature not possible with designs that spread out all 

points. Finally, the highly accurate derivative information provided by clustered designs 

may prove useful in equation discovery. Further research is clearly indicated. 
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Figure 6. This plot shows the histogram of errors for the borehole example, achieved 

using an initial quasi-nonuptal-point design near the origin of the design domain, as 

described in this section. 

 

7. Extensions 
 

Conjecture on the form of det(V) for equispaced, collinear, M-uplet-point designs: We 

expect that the 0
th
 through [M(M-1)-1]

th
-degree terms of the power series expansion of 

det(V) in the k’s are all zero. A proof along these lines would be helpful in extending the 

theory and practice of -clustered designs to triplet-point designs, quadruplet-point 

designs, etc. 

 

Predictand: Twin-point designs: Responding to a question posed by Prof. Thomas J. 

Santner at SRC 2012, we found the following sensible formula for the Gaussian-process 

predictand for the D=1, N=2 case, with a pair of twin point centered at xt: 

 

  ̂                         {        
 } , 

 

where y’(xt) is the first derivative of y(x), evaluated at the center of the twin points. 

 

Predictand: Triplet-point designs: However, for three equally spaced, triplet points in 

D=1, we found, and here report as an intriguing, tentative finding, that the usual GP 

fitting includes some nonsensical terms. Discarding the offending terms led to the 

following sensible formula: 

 

 ̂        {              
 

 
              

 }     {        
 } . 

 
Predictand Conjecture I: Tight, M-uplet-point clusters: The above results on predictands 

leads us to conjecture that the correct way to extrapolate from any M-uplet-point cluster 

centered as xt is via a formula in which the response and all the appropriate directional 
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derivatives are evaluated at the center of the cluster and with the derivative parts 

decaying with the appropriate multivariate equivalent of the form    {        
 }. 

 

Predictand Conjecture II: Loose, M-point clusters: The literature contains examples of 

GP fits that get worse with the addition of points. One example is in Haaland and Qian’s 

recent paper [17], which showed, via a series of panels in its Fig. 1, the deterioration of 

the numerical accuracy of the predictand, with increasing N, for the function 

 

f(x)=exp{(x+1/2)
2 
sin(exp{(x+1/2)

2
}), 

 

over the interval [0,1] with a Gaussian-covariance fits with =1. Based on the last three 

paragraphs, above, we conjecture that a sensible fit for this problem would be to make 

any sensible local fit to the loose cluster of data points, e.g., via a cubic spline, or even a 

more radical M-1’st-order spline, and then connect the loose cluster with other regions of 

the domain of interest, via the appropriate multivariate equivalent of the form  
   {        

 }. In this way, the predictand, local to the cluster, improves with 

increasing N, while maintaining the presumably correct mid-range and long-range 

behavior. Details of this approach will be discussed by the present author at ACAS 2012. 

 

The nugget: The present author thinks the community should maintain an open view on 

whether or not to include a nugget in GP fits. We point out that the last conjecture, above, 

leads to an alternative approach that does not require the invocation of a nugget. 
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